FPSAC: fast phylogenetic scaffolding of ancient contigs

نویسندگان

  • Ashok Rajaraman
  • Eric Tannier
  • Cédric Chauve
چکیده

MOTIVATIONS Recent progress in ancient DNA sequencing technologies and protocols has lead to the sequencing of whole ancient bacterial genomes, as illustrated by the recent sequence of the Yersinia pestis strain that caused the Black Death pandemic. However, sequencing ancient genomes raises specific problems, because of the decay and fragmentation of ancient DNA among others, making the scaffolding of ancient contigs challenging. RESULTS We show that computational paleogenomics methods aimed at reconstructing the organization of ancestral genomes from the comparison of extant genomes can be adapted to correct, order and orient ancient bacterial contigs. We describe the method FPSAC (fast phylogenetic scaffolding of ancient contigs) and apply it on a set of 2134 ancient contigs assembled from the recently sequenced Black Death agent genome. We obtain a unique scaffold for the whole chromosome of this ancient genome that allows to gain precise insights into the structural evolution of the Yersinia clade.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaffolding of Ancient Contigs and Ancestral Reconstruction in a Phylogenetic Framework

Ancestral genome reconstruction is an important step in analyzing the evolution of genomes. Recent progress in sequencing ancient DNA led to the publication of so-called paleogenomes and allows the integration of this sequencing data in genome evolution analysis. However, the assembly of ancient genomes is fragmented because of DNA degradation over time. Integrated phylogenetic assembly address...

متن کامل

Hierarchical scaffolding with Bambus.

The output of a genome assembler generally comprises a collection of contiguous DNA sequences (contigs) whose relative placement along the genome is not defined. A procedure called scaffolding is commonly used to order and orient these contigs using paired read information. This ordering of contigs is an essential step when finishing and analyzing the data from a whole-genome shotgun project. M...

متن کامل

SWALO: scaffolding with assembly likelihood optimization

Scaffolding i.e. ordering and orienting contigs is an important step in genome assembly. We present a method for scaffolding based on likelihoods of genome assemblies. Generative models for sequencing are used to obtain maximum likelihood estimates of gaps between contigs and to estimate whether linking contigs into scaffolds would lead to an increase in the likelihood of the assembly. We then ...

متن کامل

SCARPA: scaffolding reads with practical algorithms

MOTIVATION Scaffolding is the process of ordering and orienting contigs produced during genome assembly. Accurate scaffolding is essential for finishing draft assemblies, as it facilitates the costly and laborious procedures needed to fill in the gaps between contigs. Conventional formulations of the scaffolding problem are intractable, and most scaffolding programs rely on heuristic or approxi...

متن کامل

Fast scaffolding with small independent mixed integer programs

MOTIVATION Assembling genomes from short read data has become increasingly popular, but the problem remains computationally challenging especially for larger genomes. We study the scaffolding phase of sequence assembly where preassembled contigs are ordered based on mate pair data. RESULTS We present MIP Scaffolder that divides the scaffolding problem into smaller subproblems and solves these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 29 23  شماره 

صفحات  -

تاریخ انتشار 2013